II. ITINERANT ELECTRON FERROMAGNET MODEL

It is the purpose of this section to present an elementary theory, unifying several existing theories, of a single band, itinerant electron FM. In particular, we shall develop a theory, appropriate for 3-d electrons, for the Curie temperature, T_c , and its pressure derivative, $\partial T_c/\partial P$; and we shall show how estimates of the effective exchange, I, times the density of states at Fermi level, $N(\varepsilon_F)$, can be made from the measurements of $\partial T_c/\partial P$. The theory presented here follows quite closely the earlier work of Wohlfarth,⁹ Edwards and Wohlfarth,¹⁰ Shiga,¹³ and Wohlfarth and Bartel,¹² but includes details which have not been discussed in these earlier works.

For our model we assume that the exchange splitting is given by nI ζ where I is the effective intra-atomic exchange (accounting for the electron correlations) between the itinerant electrons, n is the number of d-electrons per atom, and ζ is the relative magnetization per electron arising from single-particle excitations. In the Stoner theory, the exchange splitting is $2k_B\theta' \epsilon$ where $k_B\theta'$ is the molecular field approximation interaction; thus $k_B\theta' = 1/2$ nI. The single particle excitations are described by the Stoner equations^{9,10}

$$1/2 n(l \pm \zeta) = \int_{0}^{\infty} f(\varepsilon, \eta^{\pm}) N(\varepsilon) d\varepsilon , \qquad (1)$$

where

$$f(\varepsilon,\eta) = \left\{ \exp \left[(\varepsilon - \eta) / k_{B} T \right] + 1 \right\}^{-1}$$

and

$$\eta^{\pm} = \mu \pm 1/2 \ nI^{\prime} \pm \mu_{B}^{H}$$

Here μ is paramagnetic chemical potential, H is the applied magnetic field, and $N(\varepsilon)$ is the density of states. In the limit as $T \rightarrow T_c$ such that $\zeta \rightarrow 0$ and

-5-

letting H = 0, we can expand the Fermi function exponentials in the expression for ζ , Eq. (1), and obtain the well known result

$$I\int_{0}^{\infty} N(\varepsilon) \left| \frac{\partial f}{\partial \varepsilon} \right|_{\substack{T=T_{c} \\ H=0}} d\varepsilon = 1 .$$
(2)

Within the framework of the model, Eq. (2) can be solved for T_c if $N(\varepsilon)$ is known. Even if we don't know $N(\varepsilon)$ we can solve Eq. (2) by use of the Sommerfeld expansion. To terms quadratic in T_c we obtain¹⁴

$$T_{c}^{2} = T_{F}^{2}(\overline{I} - 1) / \overline{I}$$
, (3)

where

$$\overline{I} = IN(\varepsilon_{F}) \qquad (4)$$

Here $N(e_F)$ is the density of states per atom per spin at the paramagnetic Fermi level, and T_F is the effective degeneracy temperature defined by^{9,10}

$$\Gamma_{\rm F}^{\ 2} = \left\{ \frac{\pi^2}{6} \quad \kappa_{\rm B}^{\ 2} \left[\left(\frac{{\rm N}'(\varepsilon_{\rm F})}{{\rm N}(\varepsilon_{\rm F})} \right)^2 - \frac{{\rm N}''(\varepsilon_{\rm F})}{{\rm N}(\varepsilon_{\rm F})} \right]^{-1} \right\} \quad , \tag{5}$$

where $N^{(m)}(\varepsilon_F)$ is the m-th derivative with respect to energy evaluated at ε_F . The expression for T_c^2 , Eq. (3), is identical to what one would obtain from the singularity in the exchange enhanced susceptibility where the F-integral of Lang and Ehrenreich¹⁵ is expanded by means of a Sommerfeld expansion. In order for the system to be FM, we have from Eq. (3) the Stoner criterion, $\overline{I} \ge 1$.

The expression for T_c^2 , Eq. (3), is general to the extent that we have not specified the origin or nature of I and we have not restricted $N(\varepsilon_F)$. To find